Minimizing a DFA

Lecture 9
Section 2.4

Robb T. Koether

Hampden-Sydney College

Mon, Sep 12, 2016

Outline

- Indistinguishable States
- The Algorithm
- Minimization Examples
- 4 Assignment

Outline

- Indistinguishable States
- 2 The Algorithm
- Minimization Examples
- Assignment

Indistinguishable States

Definition (Indistinguishable states)

Two states p and q in a DFA are indistinguishable if, for all $w \in \Sigma^*$,

$$\delta^*(p, w) \in F \Leftrightarrow \delta^*(q, w) \in F$$
.

- That is, the decision of whether to accept or reject any input will be the same regardless of which of the two states we are currently in.
- To minimize a DFA, we will identify states that are indistinguishable.
- When two states are indistinguishable, one of them may be eliminated.

Indistinguishable States

- Indistinguishableness is an equivalence relation.
 - Every state is indistinguishable from itself.
 - If p is indistinguishable from q, then q is indistinguishable from p.
 - If p is indistinguishable from q, and q is indistinguishable from r, then p is indistinguishable from r.

Example (Indistinguishable states)

Clearly, states 2 and 3 are indistinguishable and states 4 and 5 are indistinguishable.

Example (Indistinguishable states)

Clearly, states 2 and 3 are indistinguishable and states 4 and 5 are indistinguishable.

Example (Indistinguishable states)

Clearly, states 2 and 3 are indistinguishable and states 4 and 5 are indistinguishable.

Outline

- Indistinguishable States
- The Algorithm
- Minimization Examples
- Assignment

Determining Indistinguishable States

- To determine which states are indistinguishable,
 - Add a trap state, if necessary, to make the DFA fully defined.
 - Begin with two equivalence classes: F, Q F.
 - This divides Q into two equivalence classes whose members are indistinguishable by "reading λ."

Determining Indistinguishable States

- Within each class, apply a single transition for each symbol in Σ to see which states are distinguishable.
- This divides Q into equivalence classes whose members are indistinguishable by reading a single input symbol.
- Continue in this manner until the next input symbol, no matter what is it, does not distinguish any states.

Outline

- Indistinguishable States
- 2 The Algorithm
- Minimization Examples
- 4 Assignment

Example (Minimizing a DFA)

Minimize this DFA

Example (Minimizing a DFA)

• The initial equivalence classes are

$$F = \{10\}$$

and

$$Q - F = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}.$$

Example (Minimizing a DFA)

 $\{1,2,3,4,5,6,7,8,9\},\{10\}$

Example (Minimizing a DFA)

• Summarize the transitions in the following tables.

					Α					
	1	2	3	4	5	6	7	8	9	
а	2	6	8	5	10	10	2	5	4	а
b	7	3	9	3	7	3	9	7	10	b

Identify each entry with one of the initial equivalence classes

	Α								В		
	1	2	3	4	5	6	7	8	9		10
а	Α	Α	Α	Α	В	В	Α	Α	Α	а	В
b	Α	Α	Α	Α	Α	Α	Α	Α	В	b	В

B 10 10

Example (Minimizing a DFA)

- There are three patterns within {1, 2, 3, 4, 5, 6, 7, 8, 9} are AA, BA, and AB.
- These patterns subdivide the initial classes into the equivalence subclasses

$$\{1,2,3,4,7,8\},\{5,6\},\{9\},\{10\}.$$

Example (Minimizing a DFA)

 $\{1,2,3,4,7,8\},\{5,6\},\{9\},\{10\}$

Example (Minimizing a DFA)

			Α			
	1	2	3	4	7	8
а	2	6	8	5	2	5
b	7	3	9	3	9	7

	В	
	5	6
а	10	10
b	7	3

C				
	9			
а	4			
b	10			

U				
	10			
а	10			
b	10			

Identify each entry with an equivalence subclass.

			Α			
	1	2	3	4	7	8
а	Α	В	Α	В	Α	В
b	Α	Α	С	Α	С	Α

В						
	5	6				
а	D	D				
b	Α	Α				

C					
	9				
а	Α				
b	D				

D					
	10				
а	D				
b	D				

Example (Minimizing a DFA)

- There are 3 different patterns within {1,2,3,4,7,8}: AA, BA, and AC.
- These patterns subdivide this equivalence class into three equivalence subclasses, yielding

$$\{1\},\{2,4,8\},\{3,7\},\{5,6\},\{9\},\{10\}.$$

Example (Minimizing a DFA)

 $\{1\},\{2,4,8\},\{3,7\},\{5,6\},\{9\},\{10\}$

19/26

Example (Minimizing a DFA)

- Identify each entry with an equivalence subclass.
- The patterns are the same within each class.
- There is no further subdividing.
- Therefore, the final equivalence classes are

$$\{1\}, \{2,4,8\}, \{3,7\}, \{5,6\}, \{9\}, \{10\}.$$

Example (Minimizing a DFA)

The equivalence classes of indistinguishable states

Example (Minimizing a DFA)

The minimized diagram

Example (Minimizing a DFA)

The minimized diagram

23 / 26

Minimizing a DFA

• Let $\Sigma = \{a, b\}$ and

 $L_1 = \{ w \mid w \text{ starts with } \mathbf{a} \text{ and has an even number of symbols} \}$ $L_2 = \{ w \mid w \text{ starts with } \mathbf{b} \text{ and has an odd number of symbols} \}$

• Construct a minimal DFA for $(L_1 \cup L_2)^*$.

Outline

- Indistinguishable States
- 2 The Algorithm
- Minimization Examples
- 4 Assignment

Assignment

Assignment

• Construct an NFA for the concatenation L_1L_2 of the following languages over the alphabet $\{\mathbf{a}, \mathbf{b}\}$ and then minimize it.

$$L_1 = \{ w \mid \text{the length of } w \text{ is at most 1} \}$$

$$L_2 = \{ w \mid \text{ every odd position of } w \text{ is } \mathbf{b} \}.$$